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Abstract

By considering integral bounds on the Schwarzian derivative we extend previous
results on sufficient conditions for curves in euclidean spaces to be simple or unknotted.
The conditions are optimal.

1. Introduction

Ahlfors’ Schwarzian derivative for parametrized curves in Rn [Ah] is a useful concept in
the formulation of sufficient conditions for curves to be simple or unknotted [ChG], [Ch].
Recent results on the univalence of conformal parametrizations of minimal surfaces in R3

and holomorphic immersions of planar domains into Cn appeal to this operator in a crucial
manner [ChDO1], [ChDO2]. Injectivity in this context is ultimately a consequence of the
disconjugacy of a linear equation of order two that involves a pointwise upper bound of
the Schwarzian. The purpose of this paper is to establish new criteria of this type by
considering instead integral bounds of the Schwarzian. In Theorems 1 and 2 below we deal
with conditions that prevent a curve from self-intersecting or from becoming a knot. They
are sharp in the sense that there exist parametrizations of non-simple or knotted curves that
fail to satisfy the respective criterion by arbitrarily small amounts. The condition for simple
curves involving a pointwise bound is satisfied by extremal parametrizations f : (a, b) → Rn

that reflect sharpness in the additional sense that f([a, b]) is closed. Corresponding extremal
parametrizations for Theorem 1 fail to be smooth and exhibit a Schwarzian derivative equal
to a delta function.

2. Ahlfors’ Schwarzian

Let f : (a, b) → Rn be a C3 curve with f ′ 6= 0, and let X ·Y stand for the euclidean inner
product vectors X, Y in Rn and |X|2 = X ·X. Ahlfors considered separately generalizations
S1f and S2f of the real and imaginary parts of the usual Schwarzian in complex analysis
[Ah]. So far, only S1f has played a role for questions of injectivity. In [ChG] we showed
that the real part of Ahlfors’ Schwarzian, defined by

S1f =
f ′ · f ′′′
|f ′|2 − 3

(f ′ · f ′′)2
|f ′|4 +

3
2
|f ′′|2
|f ′|2 ,
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can be written in terms of the velocity v = |f ′| and the curvature k of the trace of f as

S1f =
(

v′

v

)′
− 1

2

(
v′

v

)2

+
1
2
v2k2 . (1)

This expression is invariant under the Möbius transformations of Rn ∪ {∞}. Observe that
S1f = Ss + 1

2v2k2, where s = s(x) is arc length as a function of x ∈ (a, b). Here, for a real
valued function h with h′ 6= 0, Sh is the usual Schwarzian

Sh =
(

h′′

h′

)′
− 1

2

(
h′′

h′

)2

.

For a change of parameter x = h(y),

S1(f ◦ h) = [(S1f) ◦ h](h′)2 + Sh . (2)

We recall the main results in [ChG], [Ch]:

Theorem A: Let p = p(x) be a continuous real-valued function on an open interval I such
that any nontrivial solution of u′′ + pu = 0 has at most one zero on I. Let f : I → Rn be
a C3 curve with f ′ 6= 0. If S1f ≤ 2p, then f is one-to-one on I and admits a spherically
continuous extension to the closed interval, which is also one-to-one unless the trace of f is
a circle, in which case S1f ≡ 2p.

Theorem B: Let f : [−1, 1) → R3 parametrize a simple closed curve in R3. If the periodic
continuation of f is C3 and S1f(x) ≤ 2π2 for all x ∈ (−1, 1), then f([−1, 1)) is unknotted.

When formulating Theorem B on an interval [a, b), the resulting upper bound after the
linear change of parameter becomes 8π2/(b − a)2. Let l(I) be the length of an interval I
and let + denote positive part.

Theorem 1: Let I be an open interval, and let f : I → Rn a C3 curve with f ′ 6= 0. If

∫

I
(S1f)+(x)dx ≤ 8

l(I)
(3)

then f admits a spherically continuous extension to the closed interval Ī and f(Ī) is simple.

Theorem 2: Let J = [a, b), and let f : J → R3 parametrize a simple closed curve in R3.
If the periodic continuation of f is C3 and

∫

J
(S1f)+(x)dx ≤ 32

l(J)
(4)

then f(J) is unknotted.

In Theorem 1, for any ε > 0 there is a parametrization f with
∫

(S1f)+dx < 8/l(I) + ε
for which f(I) is not simple, and similarly for Theorem 2. Examples will be provided in
the last section.

3. Proofs
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Let p(x) ≥ 0 and u(x) be a solution of u′′+ pu = 0 with initial conditions, say at x = 0,
u(0) = 0, u′(0) = 1. If u(x) ≥ 0 for 0 ≤ x ≤ x2 then u(x) ≤ x because it is concave. By
integrating twice we see that for such x

u(x) = x−
∫ x

0
(x− t)p(t)u(t)dt ≥ x−

∫ x

0
t(x− t)p(t)dt ≥ x− x2

4

∫ x

0
p(t)dt . (5)

The following result is well known (see, e.g., [H, Corollary 5.1]). For convenience of the
reader we include a brief proof.

Lemma 1: Let p = p(x) be continuous on (a, b), and suppose the equation

u′′ + pu = 0 (6)

admits a non-trivial solution with two zeros in (a, b). Then

∫ b

a
p+(x)dx >

4
b− a

. (7)

Proof: Suppose u 6≡ 0 is a solution of (6) with consecutive zeros a < x1 < x2 < b. Because
p ≤ p+, the Sturm comparison theorem guarantees the existence of a non-trivial solution
of the equation u′′ + p+u = 0 that vanishes twice. In other words, we may assume that the
coefficient in (6) is non-negative. Also, it is sufficient to limit attention to the case in which
x1 = 0 and u′(x1) = 1. For x ∈ J = (0, x2) we have from (5) that

u(x) ≥ x− A

4
x2 ,

where A =
∫ x2

0
p(x)dx. We have used that t(x− t) ≤ x2/4. Therefore

A

4
x2

2 − x2 ≥ −u(x2) = 0 ,

which implies that
∫ b

a
p(x)dx ≥ A =

∫ x2

0
p(x)dx ≥ 4

x2
>

4
b− a

.

The proof shows that the extremal situation occurs when the entire mass of p is concen-
trated exactly at the midpoint between both zeros. Indeed, by letting p be a delta function
at the origin, one obtains zeros at ±2 for the solution u(x) = 2−|x| of (6) (in the appropriate
weak sense).

Proof of Theorem 1: Without loss of generality we may assume that a = −b and that
|f ′(0)| = 1. Because the analysis of extension is symmetric at both endpoints, it is enough
to show the extension on (0, b]. Let p = f(0) and consider the curve φ = T ◦ f for the
Möbius transformation

T (q) =
q − p

|q − p|2 .
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Then S1φ = S1f , and it was shown in [ChG] that the function

u = |φ′|−1/2 =
|f − p |√
|f ′|

satisfies
u′′ +

1
2
(S1f)u ≥ 0 ,

and therefore also
u′′ +

1
2
(S1f)+u ≥ 0 ,

whenever f 6= p. The initial conditions are u(0) = 0 and u′(0) = 1. On [0, b) consider the
solution w of

w′′ +
1
2
(S1f)+w = 0 , w(0) = 0 , w′(0) = 1 . (8)

It follows from (5) that for x ∈ (0, b)

w(x) ≥ x− x2

2b
> 0 ,

with the same inequality holding for u(x) by the Sturm comparison. We conclude that for
x ≥ b/2

u(x) ≥ 3b

2
,

and hence ∫ b

b/2
u−2(x)dx < ∞ .

Therefore φ((b/2, b)) has finite length, which shows that φ admits a continuous extension
to x = b.

If f(Ī) is not simple, then f(α) = f(β) = p for some a ≤ α < β ≤ b. We may choose
β − α smallest possible, so that f is injective on (α, β). Note that

∫ β

α
(S1f)+dx ≤

∫ b

a
(S1f)+dx ≤ 8

b− a
≤ 8

β − α
,

which means that, after relabeling, we may assume that a = α and b = β. Consider the
composition ψ = T ◦ f with the Möbius inversion

T (q) =
q − p

|q − p|2 .

Then S1ψ = S1f and ψ(a) = ψ(b) = ∞. Again u = |ψ′|−1/2 satisfies

u′′ +
1
2
(S1f)+u ≥ 0 . (9)

Fix c ∈ (a, b) and let w be the solution on (a, b) of

w′′ +
1
2
(S1f)+w = 0 , w(c) = u(c) , w′(c) = u′(c) . (10)
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Lemma 1 shows that w cannot have two zeros on (a, b), and thus simple arguments based
on the convexity or concavity of w show that it has well-defined limits at both endpoints
a, b. If w(d) = 0 at some interior point, say d < c, then the argument presented in the
previous paragraph shows that w(x) > 0 for x ∈ (d, b) and w(x) ≥ ρ > 0 near x = b. By
Sturm comparison, u(x) ≥ w(x) on (c, b), and thus

∫ b

c
u−2(x)dx < ∞ ,

contradicting that ψ(b) = ∞.
Suppose, on the other hand, that w(x) > 0 on (a, b). If w(a) > 0 then ψ(a) is finite,

a contradiction. If w(a) = 0, we see from (5) that, near x = b, w(x) will be bounded
below by some positive constant because (S1f)+ is a continuous function. Again we reach
a contradiction. This proves the theorem.

Proof of Theorem 2: The proof follows that of Theorem B. The key step is to show that
if Γ = f([a, b]) is a knot, then it can be laid out to form a planar, closed, non-simple curve
for which the real part of the Schwarzian has not increased. This procedure is based on the
results of Brickell and Hsiung [BH] in the course of their proof of the Fary-Milnor theorem.

For p ∈ R3, let Cp denote the shell of Γ with vertex p defined as the (developable) surface
consisting of all segments [p, q] with q 6= p on Γ. The indicatrix Ip of Cp is the curve on the
sphere S2 traced by the vectors (q−p)/|q−p|; its length l(Ip) is called the total angle of Ip.
A key result established in [BH] is that Γ is unknotted if l(Ip) < 3π for all p ∈ Γ (see also
[Ch]). Therefore, if Γ is a knot then there is a point p ∈ Γ for which l(Ip) ≥ 3π. The cases
l(Ip) > 3π and l(Ip) = 3π must be dealt with separately. Suppose first that l(Ip) > 3π. As
the point p moves to a point p′ slightly away from Γ, the number l(Ip′) varies continuously,
except for jump increment in π. It follows that there exists p′ /∈ Γ for which l(Ip′) > 4π.
Since l(Ir) is a continuous function of r ∈ R3\Γ and since l(Ir) → 0 as |r| → ∞, there
exists p0 /∈ Γ for which l(Ip0) = 4π. As was shown in [Ch], the shell Cp0 can be laid out
isometrically onto the plane in a way that Γ traces out a C3 closed curve γ that winding
number 2 with respect to the point in the plane corresponding to the vertex p0

In the case l(Ip) = 3π we lay out Γ as before, with p corresponding in the plane to, say,
the origin. A variant of the argument principle allowing for zeros on the curve (see, e.g.,
[N, p. 131]) implies that γ cannot be simple: the point 0 ∈ γ contributes π to the total
variation of argument and therefore γ must in addition wind around the origin once.

In either case, let g : [a, b) → R2 be the induced parametrization of γ defined on the
original interval of definition of f . Since the laying out procedure preserves arc length, then
vg = |g′| = |f ′| = vf . Also, the curvature of γ is equal to the curvature of Γ relative to the
surface Cp0 , and therefore not larger than the curvature of Γ. We conclude from (1) that
S1g ≤ S1f . Since γ is not simple, it can be subdivided into closed curves γ1, γ2 which are
differentiable except at the point where γ has self-intersection.
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Γ

P0

γ1 γ 2

Because g is periodic, one can find intervals I1 = [x1, x2], I2 = [x3, x4] of total length
b− a such that

(i) g1 = g|I1 : [x1, x2] → γ1 and g2 = g|I2 : [x3, x4] → γ2;

(ii) the parametrizations g1, g2 are C3 on the open subintervals.

Because g1, g2 are closed it follows from Theorem 1 that
∫ x2

x1

(S1g1)+dx >
8

x2 − x1
,

∫ x4

x3

(S2g2)+dx >
8

x4 − x3
.

But
1

x2 − x1
+

1
x4 − x3

≥ 4
(x2 − x1) + (x4 − x3)

=
4

b− a
,

therefore ∫ b

a
(S1f)+dx ≥

∫ b

a
(S1g)+dx >

32
b− a

,

a contradiction.

4. Examples

Example 1: Let ε > 0 and fix I = (−1, 1). We seek a non-injective f : I → Rn for which
∫

I
(S1f)+(x)dx < 4 + ε . (11)

Let pn be a sequence of positive, even, C∞ functions with
∫
I pndx = 2 + ε/4 converging to

p0 = (2 + ε/4)δ0(x) in the sense that

lim
n→∞

∫

I
pnhdx =

∫

I
p0hdx

for all h continuous on I. For c = 1/(1 + (ε/8)) < 1, u0(x) = c − |x| is a solution of
u′′+ p0u = 0 with zeros at ±c. By writing the differential equation u′′+ pnu = 0 in integral
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form it is easy to see that, for n sufficiently large, an even solution un of u′′ + pnu = 0 will
have exactly two zeros on I, say at ±xn. For such an n let

g(x) =
∫ x

0
u−2

n (t)dt .

This function is odd, increasing and g(xn) = −g(−xn) = ∞; the intervals g((xn−δ, xn +δ))
and g((−xn − δ,−xn + δ)) overlap. We can avoid the point at infinity by taking f = T ◦ g
for a suitable Möbius transformation that maps R ∪ {∞} onto a circle in the plane. Again
we have an overlap along some arc of the circle. The Schwarzian S1f = S1g = Sg is left
invariant, and a standard calculation shows that Sg = 2pn. Because

2
∫

I
p0(x)dx = 4 +

ε

2

we see that for n sufficiently large,
∫

I
(S1f)+(x)dx < 4 + ε ,

as desired.

Example 2: Fix J = [−1, 3) and ε > 0. We seek f : J → R3 with a C3 periodic
continuation for which f(J) is a knot and

∫

J
(S1f)+dx < 8 + ε . (12)

The first step is the construction of a C3 periodic parametrization g : J → R2 satisfying
(12) for which g(J) goes around a circle twice. On each half J1 = [−1, 1) and J2 = [1, 3)
the parametrization g will trace out the circle once in identical fashion. We give the details
for J1. Let p0(x) be a smooth, non-negative, even approximation of 4δ(x) with support in
a small neighborhood of x = 0, for which

4 <

∫

J1

p0(x)dx < 4 +
ε

4
. (13)

Consider the solution u0 of

u′′0 + p0u0 = 0 , u0(0) = 1 , u′0(0) = 0 .

Because the optimal constant in (3) for the interval J1 is 8, we see from (13) that by taking
p sufficiently close to the delta function, the function u0 will have zeros at points ±x0 ∈ J1

close to the endpoints of J1. Note that u0 is linear away from the support of p. Consider

F (x) =
∫ x

1
u−2(t)dt .

Then F ((−x0, x0)) = R and F (−x0) = F (x0) = ∞, so that some Möbius transformation
G = T ◦ F will map [−x0, x0) onto a circle. One can adjust the coefficient p so that u0 = 0
at exactly ±1. But a linear decay to 0 will prevent the continuation of G to J2 to be C3 at
x = 1. To see this, suppose u0(x) = α(1− x) near x = 1, and let

G =
1
F

.
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Then |G′| = F ′/F 2 is an even function with non-vanishing derivative at x = 1, and therefore
cannot be continued to J2 as a smooth periodic function. This shows that we need to modify
the asymptotic of u at the zeros in a way that the resulting function |G′| has a vanishing
derivative there. For example, near x = 1 one can take

u(x) =
(1− x)− 1

3(1− x2)3√
1− 2x(1− x2)2

, (14)

which gives near 1

F (x) =
1

(1− x)− 1
3(1− x2)3

.

The resulting function |G′| now has vanishing derivative at x = 1. A straightforward
calculation shows that u′′ + qu = 0 for a function q that is negative. This means that we
can modify the original approximation p0 to an even function p with

∫

J1

p+(x)dx < 4 +
ε

4
,

for which the solution the even solution of u′′+pu = 0 vanishes exactly at ±1 in accordance
with (14). A Möbius transformation of F has the desired can now be extended periodically
to J2 as a smooth parametrization g that goes around a circle C twice. Note that S1g =
S1F = 2p, hence ∫

J
(S1g)+(x)dx < 8 +

ε

2
.

By slightly modifying the curvature and with a small cost in
∫
J(S1g)+(x)dx, we can arrange

that the curve traced out by g restricted to J2 be almost a circle, disjoint from C except
for the point of tangency g(1).

In the final step, we modify g to a parametrization f for which the trace is knotted, once
more with negligible cost in

∫
J(S1g)+(x)dx. This can be accomplished by replacing a small

portion of one of the arcs at the point of tangency by a very thin tubular neighborhood,
along which the new arc of f will knot around once. This procedure introduces torsion, on
which the Schwarzian is independent. It is easy to see that both the modified curvature and
velocity remain arbitrarily close to their original values as long as the tubular neighborhood
is thin enough. This finishes the example.
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